Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chun-Bao Li, Wen-Qin Zhang* and Chao Wang

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wqzhang@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
$w R$ factor $=0.106$
Data-to-parameter ratio $=14.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(6R,9S,13R,14S)-7,8-Didehydro-3,7-dimethoxy-17-methyl-6-phenylmorphinan-4,6-diol

The title compound, $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4}$, (II), was prepared by the reaction of $(9 S, 13 R, 14 S)$-7,8-didehydro-3,7-dimethoxy-4-hydroxy-17-methylmorphinan-6-one, (I), with phenylmagnesium bromide. Compound (II) is a tetracyclic alkaloid with four chiral centers. The piperidine ring adopts a chair conformation, while the other two aliphatic rings are in twisted chair conformations. Compound (II) is the exclusive product, which means that, because of the steric effect, the phenyl anion stereoselectively attacks the opposite side away from the original phenyl group.

Comment

($9 S, 13 R, 14 S$)-7,8-Didehydro-3,7-dimethoxy-4-hydroxy-17-methylmorphinan-6-one, (I), is an important natural product which has been used to ease pain, to decrease blood pressure and to diminish inflammation. In order to study the stereochemistry of the reaction of (I) with phenylmagnesium bromide, the crystal structure of the title compound, (II), was determined by X-ray diffraction methods.

The results show that (II) is a tetracyclic alkaloid with four chiral centers. By comparing the structure of (II) with that of (I) (Iijima et al., 1978; Hitotsuyanagi et al., 1994), the newly formed chiral center of (II) was shown to be $6 R$. The N17/C9/ C13-C16 piperidine ring adopts a chair conformation, while the C9-C14 and C5-C8/C14/C13 aliphatic rings adopt twisted chair conformations. Compound (II) is the exclusive product, which means that, because of the steric effect, the phenyl anion stereoselectively attacks the opposite side away from the original substituted phenyl group. The stereoselectivity of the phenyl anion is greater than that of the hydride anion on (I) (Li et al., 2002).

(I)

(II)

The $\mathrm{C}-\mathrm{C}$ bonds within the benzene rings have normal aromatic values. The two methoxy groups are coplanar with the attached benzene ring and with the $\mathrm{C} 7=\mathrm{C} 8$ double bond and its substituents, respectively. The bonds $\mathrm{O} 1-\mathrm{C} 3$ and $\mathrm{O} 4-$ C7 of 1.390 (5) and 1.374 (4) \AA, respectively, are shorter than those of common $\mathrm{C}-\mathrm{O}$ single bonds [O1-C19 and $\mathrm{O} 4-\mathrm{C} 18$ are 1.402 (8) and 1.410 (4) \AA, respectively]. These facts indi-

Figure 1
View of the molecular structure of compound (II), with ellipsoids at the 30% probability level.
cate that there exists $p-\pi$ conjugation between O 1 and the benzene ring, as well as O 4 and the $\mathrm{C} 7=\mathrm{C} 8$ double bond.

The bond angle of $125.9(4)^{\circ}$ for $\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$ is larger than that of $113.6(4)^{\circ}$ for $\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$. It is assumed that this conformation will minimize the van der Waals interaction between the H atom on C 2 and the C 19 methyl group. The C 18 methoxy group exhibits the same phenomenon. This kind of angle-opened arrangement of a methoxy group was also found in r-1,c-2,t-3,t-4-1,3-bis(4-methoxyphenyl)-2,4-bis[2-(5methylbenzoxazolyl)]cyclobutane (Zhang et al., 2001) and r-1,c-2,t-3,t-4-1,3-bis(4-methoxyphenyl)-2,4-bis[2-(5-phenyl-1,3,4-oxadiazolyl)]cyclobutane (Zheng et al., 2001).

Experimental

Under an N_{2} atmosphere, a solution of $0.66 \mathrm{~g}(2 \mathrm{mmol})$ of (I) in 20 ml of anhydrous THF was added to 8 ml of PhMgBr (8 mmol , $1.0 \mathrm{~mol} \mathrm{l}^{-1}$) in THF solution and stirred at room temperature for 12 h . The reaction mixture was poured into 50 ml of $1.0 \mathrm{~mol} \mathrm{l}^{-1}$ $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with CHCl_{3}. After drying over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was evaporated, and the residue was purified by column chromatography on silica gel, eluting with 8:0.15:0.05 $\mathrm{EtOAc} / \mathrm{CH}_{3} \mathrm{OH} / \mathrm{Et}_{3} \mathrm{~N}$ to give 0.56 g of (II). Yield: 70%, m.p.: $496-498 \mathrm{~K},[\alpha]_{D}^{25}=-41.3^{\circ}\left(\mathrm{CHCl}_{3}\right)$, IR (KBr): $3200(m, b r)$, 2929 (s), 1657 (s), 1606 (m), 1485 ($s), 1279$ ($s), 1206(s), 1153$ (m), 1057 $(s, b r), 853(m), 802(m), 731(m) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 7.37-7.24$ $(5 \mathrm{H}, m), 6.76(1 \mathrm{H}, d, 8 \mathrm{~Hz}), 6.59(1 \mathrm{H}, d, 8 \mathrm{~Hz}), 6.30(1 \mathrm{H}, b r), 4.71(1 \mathrm{H}$, $s), 3.85(3 \mathrm{H}, s), 3.80-3.60(3 \mathrm{H}, m), 3.38(3 \mathrm{H}, s), 3.20-2.95(4 \mathrm{H}, m), 2.40$ $(1 \mathrm{H}, s, b r), 2.70(3 \mathrm{H}, s, b r) ; 2.01-1.95(3 \mathrm{H}, m)$ p.p.m.; ${ }^{13} \mathrm{C}$ NMR: $158.02,147.22,145.09,144.44,130.06,127.90,126.40,125.03,124.95$, $118.69,108.90,97.62,74.94,57.97,55.94,54.52,50.15,47.93,44.40$, 42.20, 35.87, 35.61, 24.47 p.p.m.

Crystal data
$\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{4}$
$M_{r}=407.49$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=11.710$ (4) \AA
$b=13.177$ (4) \AA
$c=14.236$ (5) \AA
$V=2196.6(13) \AA^{3}$
$Z=4$
$D_{x}=1.232 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 782 reflections
$\theta=2.5-22.6^{\circ}$
$\theta=2.5-22.6^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$T=293(2) \mathrm{K}$
Prism, colorless
$0.28 \times 0.24 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.976, T_{\text {max }}=1.000$
9147 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.106$
$S=0.96$
3861 reflections
275 parameters

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 3$	$1.390(5)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.319(5)$
$\mathrm{O} 1-\mathrm{C} 19$	$1.402(8)$	$\mathrm{C} 8-\mathrm{C} 14$	$1.505(5)$
$\mathrm{O} 2-\mathrm{C} 4$	$1.361(4)$	$\mathrm{C} 9-\mathrm{N} 17$	$1.492(4)$
$\mathrm{O} 3-\mathrm{C} 6$	$1.445(4)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.522(5)$
$\mathrm{O} 4-\mathrm{C} 7$	$1.374(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.546(4)$
$\mathrm{O} 4-\mathrm{C} 18$	$1.410(4)$	$\mathrm{C} 16-\mathrm{N} 17$	$1.480(4)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.508(5)$	$\mathrm{N} 17-\mathrm{C} 17$	$1.468(4)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 19$	$115.8(6)$	$\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 5$	$111.3(3)$
$\mathrm{C} 3-\mathrm{O} 1-\mathrm{C} 19^{\prime}$	$116.7(6)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{O} 4$	$126.0(3)$
$\mathrm{C} 7-\mathrm{O} 4-\mathrm{C} 18$	$118.2(3)$	$\mathrm{O} 4-\mathrm{C} 7-\mathrm{C} 6$	$109.4(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 1$	$125.9(4)$	$\mathrm{N} 17-\mathrm{C} 9-\mathrm{C} 10$	$117.9(3)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$113.6(4)$	$\mathrm{N} 17-\mathrm{C} 9-\mathrm{C} 14$	$108.3(3)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 12$	$119.8(3)$	$\mathrm{C} 15-\mathrm{C} 13-\mathrm{C} 12$	$108.3(3)$
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	$120.3(3)$	$\mathrm{C} 16-\mathrm{N} 17-\mathrm{C} 9$	$114.3(3)$
$\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 7$	$108.5(3)$		

Table 2
Hydrogen-bonding geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 2$	0.84	2.39	$3.088(4)$	141
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 17^{\mathrm{i}}$	0.86	1.85	$2.692(4)$	164

Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}-y, 2-z$.
The H atoms were positioned geometrically and refined as riding on their parent atoms. The absolute configuration can not be determined from the diffraction data in the absence of significant anomalous dispersion, and has been assumed from that of the starting material; Friedel pairs were merged.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

organic papers

The authors gratefully acknowledge financial support from the Hong Kong Polytechnic University.

References

Bruker (1997). SMART (Version 5.10), SAINT (Version 5.10) and SHELXTL (Versions 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Hitotsuyanagi, Y., Ikuta, H., Nishimura, K., Takeya, K. \& Itokawa, H. (1994). J. Chem. Soc. Chem. Commun. pp. 2707-2708.

Iijima, I., Minamikawa, J. I., Jacobson, A. E., Brossi, A. \& Rice, K. C. (1978). J. Org. Chem. 43, 1462-1463.
Li, C. B., Chen, Y., Li, S. L., Zhang, W. Q., Cui, Y., Ji, X. J. \& Zheng, P. W. (2002). Chin. J. Struct. Chem. 21, 470-472.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, W. Q., Zhuang, J. P., Li, C. B., Sun, H. \& Yuan, X. N. (2001). Chin. J. Chem. 19, 695-701.
Zheng, Y., Zhuang, J. P., Zhang, W. Q., Leng, X. B. \& Weng, L. H. (2001). Acta Cryst. E57, o1029-o1031.

